PtMo alloy and MoO(x)@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts.
نویسندگان
چکیده
PtMo alloy and MoO(x)@Pt core-shell nanoparticles (NPs) were successfully synthesized by a chemical coreduction and sequential chemical reduction method, respectively. Both the carbon-supported alloy and core-shell NPs show substantially higher CO tolerance, compared to the commercialized E-TEK PtRu alloy and Pt catalyst. These novel nanocatalysts can be potentially used as highly CO-tolerant anode electrocatalysts in proton exchange membrane fuel cells.
منابع مشابه
Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کاملUnusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
A theoretical and experimental study of the electrocatalytic oxidation of CO on PdxAu140-x@Pt dendrimer-encapsulated nanoparticle (DEN) catalysts is presented. These nanoparticles are comprised of a core having an average of 140 atoms and a Pt monolayer shell. The CO oxidation activity trend exhibits an unusual koppa shape as the number of Pd atoms in the core is varied from 0 to 140. Calculati...
متن کاملEthanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media
In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...
متن کاملPlatinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer w...
متن کاملArchitecturally Controlled Bimetallic Nanoparticles for Heterogeneous Catalysis
Title of Dissertation/Thesis: Architecturally Controlled Bimetallic Nanoparticles for Heterogeneous Catalysis Shenghu Zhou, Doctor of Philosophy, 2007 Thesis Directed By: Professor Bryan W. Eichhorn Department of Chemistry and Biochemistry This work develops synthetic methods for architecturally controlled AuPt and CuPt bimetallic nanomaterials. The AuPt heteroaggregate, AuPt alloy spherical na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 20 شماره
صفحات -
تاریخ انتشار 2009